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Euler’s formula, eπi + 1 = 0, is regarded as the most beautiful equa-
tion in mathematics. However, at first sight is just a meaningless heap
of symbols. The numbers π and e are mysterious enough. But raising
something to the power i =

√
−1 must be a joke. Well, it isn’t. The

usual strategy of extending the domain of a function gently leads to
this equation.

The essence of being a circle: π

The number π is irrational, meaning that it cannot be written as a
ratio of two whole numbers. We can only approximate its value.

π = 3.1415926535897932384626433832795028841971 . . .

To figure out its digits, we can take any circular physical object, mea-
sure its diameter and circumference, then π is just their ratio.

π =
circumference

diameter

Physical measurements are not accurate enough to calculate π with
precision, so we need to use some formula. However, π is not just ir-
rational but transcendental as well, meaning that it can’t be produced

√
2 is a solution of x2 = 2, so it is not

transcendental.by a finite algebraic expression using addition, subtraction, multipli-
cation, division, and rational powers. We need use some infinite sum
formula to find π’s value. Here π is not expressed directly. If the

right hand side is evaluated, we can
get π’s value by a simple arithmetic
calculation.

π2

6
= 1 +

1
22 +

1
32 +

1
42 + · · · =

∞

∑
n=1

1
n2

π

4
= 1− 1

3
+

1
5
− 1

7
+

1
9
− · · · =

∞

∑
n=0

(−1)n

2n + 1

It might be a bit surprising that infinitely many summands add The sigma sum notation excels in
capturing the pattern of infinite sums.up to a finite value. The trick is that later terms are getting smaller

and smaller and contribute less and less to the total. In practice, we
can stop after just summing finitely many terms, when we think the
approximation is good enough.

The base of the natural logarithm: e

The first few digits of e are

e = 2.71828182845904523536028747135266249775724709369995 . . . ,
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but these only give finite approximations, since e is also irrational
and transcendental. The following limits can be used to calculate the
digits. They are converging slowly (big n and small x are needed).
The first one comes from compound interest calculation with increas-
ingly frequent compounding.

e = lim
n→∞

(
1 +

1
n

)n

e = lim
x→0

(1 + x)
1
x

Probably the easiest way calculate e is to take a couple of terms from
the infinite sum The notation n! stands for n factorial,

which is the product of the natural
numbers from 1 to n. For zero the value
of 0! is 1 by definition. Recursively,
0! = 1 and n! = n(n− 1)!.

0! =1

1! =1

2! =2 = 1 · 2
3! =6 = 1 · 2 · 3
4! =24 = 1 · 2 · 3 · 4
5! =120 = 1 · 2 · 3 · 4 · 5
6! =720 = 1 · 2 · 3 · 4 · 5 · 6
7! =5040, 8! = 40320,

Why 0! = 1? To complete the pattern
of (n− 1)! = n!

n . Or, n! is the number
of ways to arrange n things, and we can
do it in one way when we have zero
objects.

e1 = e =
∞

∑
n=0

1
n!

=
1
0!

+
1
1!

+
1
2!

+
1
3!

+ · · · ,

which is just a special case of ex, by applying the power series form
of the exponential function to 1.

ex =
∞

∑
n=0

xn

n!
=

x0

0!
+

x1

1!
+

x2

2!
+

x3

3!
+ · · ·

Note, that this is a radically different way of calculating the powers
of e. Instead of directly taking powers of e we take infinitely many
powers of the exponent (or in practice just finitely many of them).

Trigonometric functions redefined

Trigonometric functions are defined by the ratios of the sides of right
angled triangles. We can extend them to accept bigger angles by
using reference angles, which boils down to the coordinates of a
point tracing a circular motion. Yet, there is a third way to define
trigonometric functions. We can use power series, just as for the
exponential function above. Why do these infinite sums work for

these functions? Answer is in Calculus:
Taylor and Maclaurin series. Just to
get an intuitive idea, one may use a
graphical computer algebra system to
draw the first few term of the power
series.

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · · =

∞

∑
n=0

(−1)nx2n+1

(2n + 1)!

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− · · · =

∞

∑
n=0

(−1)nx2n

(2n)!

What is the point? Why calculating the sine and cosine functions in
such a roundabout way? Because power series work for complex
numbers as well, not only for real numbers. I can’t make sense of
a triangle with a complex angle, but I can easily calculate the nth
power of that complex number. They are also useful for numerical
calculations carried out by computers.
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The surprise: the exponential breaks into two trigonometric halves

It seems now that we can calculate powers like ea+bi, where a + bi
is a complex number in the standard form, a, b ∈ R. By using the
simple laws of exponents we have ea+bi = eaebi. The first factor of the
product is ea is a real number itself, thus we can concentrate on the
more interesting ebi part.

We would like to know what it means to have a complex power of
e, what is eix where x ∈ R.

eix =
∞

∑
n=0

(ix)n

n!
=

(ix)0

0!
+

(ix)1

1!
+

(ix)2

2!
+

(ix)3

3!
+ · · ·

By laws of exponents (ix)n = inxn, thus I can separate the real and It is easy to calculate to powers of the
complex unit

i0 =1

i1 =i

i2 =− 1

i3 =− i

i4 =1,

to see that they cycle with a period
of 4. This gives the repeating patterns
++−− and real-complex-real-complex.

complex powers.

eix =
∞

∑
n=0

(ix)n

n!
=

1
0!

+
ix
1!
− x2

2!
− ix3

3!
+

x4

4!
+

ix5

5!
− x6

6!
− ix7

7!
+

x8

8!
+

ix9

9!
−· · ·

We see that i remains in every second term, so let’s try to separate
those and extract i.

eix =

(
1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

)
+ i

(
x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · ·

)
Looks familiar? Sure, it’s on the previous page. The sums in the
parentheses are trigonometric functions. Therefore, we have Eu-
ler’s formula, establishing connection between the exponential and
trigonometric functions. By letting a = cos(x) and b = sin(x) we

are also back to the familiar algebraic
form of complex numbers: a + bi.eix = cos(x) + i sin(x)

In a sense, when we try to break the complex exponential function
into two parts, we get the complex sine and cosine. Note, that we
only need to evaluate the trigonometric functions on the real value x.

Now we can answer the main question. It is just applying Euler’s
formula to π:

eπi = cos(π) + i sin(π) = −1 + i · 0 = −1,

therefore,
eπi + 1 = 0.
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