
What is programming?
Attila Egri-Nagy

v2017.12.30

Instructing computers? Writing text using arcane symbols? Pastime
activity for the socially deprived? Money making career choice? Does
it bring doomsday closer or is it a key skill for our survival? Here is an
idiosyncratic list of a few topics towards answering these questions.

On the surface, programming is only about instructing computers
to perform useful tasks. In other words, programming is creating
and controlling computational processes. We can often break down
a big task into small steps, where these operations are so simple that
a physical process can carry them out. Programming is a clever way
of combining these simpler steps into more useful ones repeatedly.
As a result, we can make the computer carry out complex tasks that
are menaningful to us. This is already very important, since we have
surrounded ourselves by computers. But a closer look reveals that it
is also a cultural phenomenon. It has a rich history, different ways
of thinking, its own aesthetics, and programming even makes sense
without any computers around.

Philosophy and Programming

During my undergraduate years I studied Mathematics, Software
Engineering and Philosophy in parallel. Many people asked about
this combination. How is it possible to mix extremes, such as an-
cient Greek metaphysics and programming? My view might have
been a bit peculiar, but I failed to see the difference. Our goal is to
understand the world around us by creating an abstract model of it.
The way of Philosophy is to discuss as many wild ideas as we can
conceive, and see what makes sense or simply sounds good. The pro-
gramming approach is to explain to a computer how the world (or
some part of it) works. Explaining helps a lot in understanding some-
one’s own ideas. Since instructing a computer requires very high
precision, programming forces us to understand the phenomenon we
are trying to model computationally. So, the philosophical method
and programming are different, but the purpose is the same.

Declarative vs. procedural knowledge

One thing is to know what
√

2 is. It is the number that gives 2 when
multiplied by itself. It is a different thing to know how to obtain its
actual value. Here’s a method: start with a guess, let’s say 1. Then



what is programming? 2

2/1 = 2 shows that our guess is not right, but we can improve it. By
taking the average we get 2+1

2 = 1.5, a better guess. Now 2/1.5 =

1.3333 and 1.5+1.3333
2 = 1.4167, getting close. By repeating this process

we can get arbitrary close to the numerical value of
√

2.
Similarly, it is one thing to know how the solution of a sudoku

puzzle looks like, and another one to know how to solve it. I know
what I want, but I may not know how to get it. This is the distinction
between the declarative and procedural knowledge. Some program-
ming languages are more declarative, we only need to describe the
solution we want. Thus understanding programming as instructing
computers what to do is only a limited view.

Interestingly, while the underlying idea of programming is know-
ing how to do something, the development of programming lan-
guages is about gradually moving towards the declarative ideal.

Patterns of doing things

We can spot general patterns in our repetitive daily activities, and
those appear in programming as well. Often we need to do the same
action to a bunch of things.

For instance, we have a bag of oranges, and we peel all of them.
In programming we say we transform a collection. Or, we might want
to get all apples from a bowl of fruits. We go through the fruits and
if it is apple, then we take it out, if not, we leave it in the bowl. This
is filtering a collection. Staying with the fruity example. We can turn
a bag of fruits into a fruit salad. We produce a single result from a
bunch of things. This is reducing/folding a collection.

History, culture

Programming languages form families, and they are centered around
paradigms. Imperative, object-oriented, functional, logic, to name
a few major ones. People tend to gather around programming lan-
guages in communities to share ideas with like minded people and
help each other. Sometimes these communities become tribal and ag-
gressive to outsiders and members of other communities. This often
manifests itself in discussing unimportant details, like what symbols
to use to structure the code (e.g. {} versus ()). It is more sensible to
ask which language/paradigm is the most suitable for a given task,
and just be nice to each other.



what is programming? 3

Text

Programming is about writing text. This can be viewed as a disad-
vantage or as a real deal. One can argue that we haven’t made the
breakthrough yet. Despite some effort for obtaining visual repre-
sentations of processes, most programs are written as text. On the
other hand, text can be viewed as the most precise way of storing
information, especially how-to-do descriptions.

Typography

If it is text, then all the issues of typography applies to source code as
well. The assumption is that reading requires mental effort, and the
brain has to spend some of the energy for just recognising the letters
and words. By making the typeface more readable, we can lighten
the load.

Source code is written in monospaced (fixed-width) font, where
each letter occupies the same horizontal space. This comes from
the technological heritage of typewriters and it also has a practical
purpose. The program is written in a grid, so it is easy to refer to
exact locations by giving the row number and the character position.

Meaning

When we read a book, we imagine a world described in the book.
Reading source code is similar. We imagine the computation which
happens when the program is running. Sort of, our head acts as a
computer. This is also where the difficulty of programming comes
in. The cognitive load of understanding programs can be high, since
computers don’t have the same limitations we have. They do more
things than what we can think of at a moment. Programming lan-
guages can be viewed as a collection of ideas to reduce this cognitive
load.

To turn the metaphor around, writing literature can be viewed as
programming minds (not in the political sense) to imagine events and
characters.

Just like in natural languages, the meaning is often language inde-
pendent. In programming we have the notion of the algorithm, then
actual implementations in different programming languages.

Names

Naming is very important in programming. Not for the computer
though, where names are translated into memory addresses, that



what is programming? 4

are just numbers. We could build some false mythology around
programming as a creating act, pointing to religions and sorcerers,
where a word can create worlds and conjure spirits. This might be
entertaining, but the real importance is elsewhere.

Naming is a tool of abstraction. For a given complex structure
or process, we just put a symbolic label on it, so we do not have to
deal with its inner workings. Imagine a situation in which we are not
allowed to use names for things, only to describe them – this happens
when you learn a foreign language.

It is not surprising that programmers find naming difficult: you
write a useful piece of code, that may be used often and by others,
so the name should be a good summary, or a hint, or an indicator of
what the code is doing. So the skill of naming is on par with being
able to understand and communicate what a program is doing.

Understanding and Communication

If written code is never read by someone, then it is probably not used
at all. No one cares to check it, no one is interested in that solution
of the problem. In the learning process of programming it might
happen that only the author of the program reads the source code.

In practice it is a form of communication. Team members can say
to each other “This is how I think about the problem domain.”, “This
way I would like to solve this problem.” through their written code.
Writing source code is a form of communication.

Difficulty and the Thrill

It comes from the abstract nature of the ‘material’ software engineer-
ing is dealing with. Evolutionary, we are better equipped for dealing
with, or even just imagining real objects. Abstract concepts, number
for instance, need some spatial grounding (number line).

On the other hand, in the realm of computing, there are no phys-
ical limitations. We can build a little ‘engine’, a piece of code that Or rather, the physical limitations are

not inherent, thay are due to the fact
the computers are physical objects.
Consider power consumption, cooling
reuirements.

works on a small piece of data, then we can immediately feed a data
item that is million times bigger. In our physical world, constructions
don’t scale without limits.

Importance

After several decades of living with computing technologies it is
clear that they can be used both for benevolent and for malicious
purposes, just as with any other advanced technologies.



what is programming? 5

Programming, as a way of understanding the world around us
in terms of procedural knowledge, is crucial even without having
computers. Learning to code is a way of improving thinking skills.


	Philosophy and Programming
	Declarative vs. procedural knowledge
	Patterns of doing things
	History, culture
	Text
	Typography
	Meaning
	Names
	Understanding and Communication
	Difficulty and the Thrill
	Importance

