Once complex numbers are introduced in a College Algebra/PreCalculus course, why not discuss Euler’s formula? Especially the equation $e^{\pi i}+1=0$, that looks good on a T-shirt. A full proof is out of question, but the power series definitions of the exponential and trigonometric functions provide a narrow, but walkable path up to the summit. With a computer algebra system it is easy to demonstrate how the approximations work, just by entering a few terms of the infinite sums.

Here are the slides for my talk “Finite Computational Structures and Implementations” for the The 4th International Symposium on Computing and Networking CANDAR’16 held in Hiroshima, Japan, November 22-25, 2016.

The photo was taken in the Higashi Hiroshima Arts and Culture Hall, the venue of the conference.

Teaching, digitally disrupted (PDF) mini keynote and Hackathon guidelines (PDF) in general and for curriculum design in particular. These documents were prepared for the Digital Studies Hackathon Event at Akita International University, 2016 November 26. http://www.aiu-digitalstudies.org/